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Abstract

Integrating information from multiple sensors, known as sensor fusion, is particularly challenging for small
datasets where selecting from the plethora of available methods poses a significant challenge in chemometric
analysis. This study compares several sensor fusion methods (spanning data-level, feature-level, and decision-
level fusion) based on partial least squares (PLS) and convolutional neural network (CNN) models. This
study is the first to compare simple sensor fusion methods to the latest multiblock PLS models and parallel-
input CNNs, to the best of our knowledge. We demonstrate sensor fusion using a small dataset of 177 rock
samples on two prediction tasks: predicting lithium (Li) concentrations and zirconium (Zr) concentrations
using three types of spectra, namely X-ray fluorescence (XRF), visible to short-wave infrared (Vis-NIR-
SWIR), and laser-induced breakdown spectroscopy (LIBS). The best-performing Li model was PLS using
XRF (mean RMSEP: 0.078%) and the best sensor fusion model was ROSA (mean RMSEP: 0.087%). The
best Zr model was a high-level fusion of PLS models (mean RMSEP: 0.042%).
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1. Introduction

Integrating information from multiple, comple-
mentary, spectroscopic techniques is particularly
challenging for small datasets where ground truth
is limited, as is common in spectroscopy. The chal-
lenge in chemometric analysis lies in picking an ap-
propriate model. There are many methods for sen-
sor fusion ranging from straightforward models that
throw the data together to complex neural network
architectures designed specifically for sensor fusion.
The aim of this paper is to investigate which meth-
ods work well for small data scenarios.
Examples of spectral sensor fusion include com-

bining hyperspectral spectrometers [1], Raman and
LIBS [2], and others [3, 4, 5, 6, 7, 8, 9, 10, 11, 12].
Sensor fusion methods, and multiblock methods
[13] more generally, are commonly classified into
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three levels [14, 10], as shown in Figure 1. Low-level
fusion refers to joining data from multiple sources
together and analyzing them in the same way as for
a single multi-variable source. In mid-level fusion,
features are first extracted from each input and
then these features are combined. High-level fu-
sion methods combine multiple predictions derived
from each input.

In this study, we compare single-sensor methods
and methods from each level of sensor fusion on
a small dataset. In low-level fusion, the simplest
option is to concatenate (after any normalization)
all the data together then train a regression model
as normal. High-level sensor fusion involves train-
ing multiple prediction models and combining their
outputs. We consider three high-level sensor fusion
methods: a linear model that combines the outputs
of (1) partial least squares (PLS) models and (2)
neural network models, and (3) a recent multiblock
extension to PLS. As for mid-level fusion, neural
networks can be arranged to first extract intermedi-
ate features from each sensor, then to combine those
features together to output a prediction [15, 16];
this model is trained end-to-end [17], which avoids
loss of information that can arise when doing vari-
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Figure 1: Sensor fusion models can by described as fitting into one of three levels, depicted here: low-level, mid-level, and
high-level fusion (also known as data-level, intermediate or feature-level, and decision-level).

able selection or dimensionality reduction to each
block prior to the fusion step. Using automatic hy-
perparameter optimization (HPO) [18] techniques,
we optimized the architecture and hyperparameters
of a convolutional neural network (CNN) for mid-
level sensor fusion. We compare sensor fusion tech-
niques on two prediction tasks individually: pre-
dicting lithium (Li) concentration and predicting
zirconium (Zr) concentration using three types of
spectra.

2. Materials and Methods

2.1. Data and Experiment Setup

This section provides details about the dataset,
and the training and evaluation methodology. The
dataset used in this study consists of 177 rock
core samples, each about 8 cm in length, ob-
tained from a lithium mineral exploration project.
Three types of spectroscopy were used to ana-
lyze each sample: x-ray fluorescence (XRF), visible
to short-wave infrared (Vis-NIR-SWIR) hyperspec-
tral, and laser-induced breakdown spectroscopy
(LIBS). Each spectrometer was used to scan each
rock sample in four orientations, and the resulting
spectra were averaged together. After obtaining
spectral measurements, each sample was destruc-
tively analyzed using geochemical assays to deter-
mine ground truth.
As in many spectroscopy applications, resource

limitations constrained the number of samples that
could be studied. Each sample is manually moved
into position for each sensor type and for each of 4
orientations, and a third-party assay lab was paid
to perform geochemical analysis. Not only is this
process time-consuming and expensive, but it also

destroys the rock in the process, eliminating any
possibility of further inquiry or studies.

2.1.1. X-ray Fluorescence

Energy-dispersive X-ray fluorescence (XRF) is
a non-destructive analytical technique utilized for
determining the elemental composition of a sam-
ple. When X-rays irradiate a sample, atoms absorb
the energy and eject electrons, creating vacancies.
These vacancies cause electrons from outer shells
to transfer to inner shells and, consequently, char-
acteristic X-rays are emitted with an energy equal
to the difference between the two binding energies
of the corresponding shells.

The XRF instrument utilized in this study uses
a 50 kV X-ray tube with a silver (Ag) target and a
detector that has a beryllium (Be) window. It gen-
erates a spectrum with 1024 channels from 2 keV
to 33 keV. The spot size on the sample is around 2
cm in diameter. The unit is automatically moved to
be approximately 10 cm away from the rock sample
using a laser distance sensor.

2.1.2. Visible to Short-wave Infrared

A portable visible to short-wave infrared (Vis-
NIR-SWIR) spectrometer was used to collect high-
resolution spectral reflectance data in the range of
350 to 2500 nm with 1 nm intervals (2151 spectral
channels). The instrument is an ASD TerraSpec
Halo model from Malvern Panalytical that carried
out auto-calibration. The technique is a contact
method and the analysis spot size is approximately
2 to 3 cm in diameter.

2.1.3. Laser-Induced Breakdown Spectroscopy

Laser-induced breakdown spectroscopy (LIBS) is
a technique that uses a high-energy laser pulse
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to create a plasma on the sample surface, which
emits light that can be analyzed by a spectrome-
ter. Due to laser ablation, a small portion of the
material is destroyed, but LIBS is still considered
non-destructive because the spot size is around 0.2
mm in diameter, which is negligible compared to
the mass of the whole rock. For each of the four
rock sample orientations, 100 lasers pulses are pro-
duced, resulting in a total of 400 spectra that are
averaged to produce one spectrum per rock sample.
The LIBS instrument is a FiberLIBS model from

Secopta (Teltow, Germany) equipped with a 1064
nm Q-switched Nd:YAG laser that has a pulse du-
ration of 1.5 ns, an energy output of 3 mJ, a maxi-
mum pulse rate of 100 Hz, and a spot size of around
0.2 mm. The spectrometer is a Czerny-Turner type
with a CCD detector providing 2048 channels from
229.21 to 499.58 nm with a full width at half max-
imum (FWHM) of 0.20 to 0.5 nm.

2.1.4. Prediction Targets

Li and Zr were chosen as the prediction targets
because they are relevant to the mineral exploration
project where the rocks were collected and they rep-
resent examples where direct signals are expected
(Zr) and not expected (Li) in the XRF spectrum.
Neither element would have direct responses in Vis-
NIR-SWIR. Both elements have the potential to
show direct responses using LIBS. Since the sen-
sors exhibit unique abilities, their responses are ex-
pected to complement each other in a sensor fusion
model.
Ground truth Li and Zr concentrations are ob-

tained by destructive geochemical assay providing
gold-standard composition estimates. ALS, a com-
mercial assay laboratory, carried out the analysis
using their proprietary ME-MS61 and ME-XRF10
procedures [19]. The analysis uses 4-acid diges-
tion followed by inductively coupled plasma mass
spectrometry (ICP-MS). For Zr, 38 samples were
above 500 ppm; these overlimit samples were subse-
quently analyzed by ALS’s ME-XRF10 procedure.
The samples were also accompanied by qualitative
descriptions of the rock type, provided by a geolo-
gist during the drilling campaign.

2.1.5. Data Partitioning and Evaluation

Our evaluation and hyperparameter optimization
method follows best practices [20, 21, 22, 23]. A test
set of 35 samples (20% of the dataset) is selected
using the DUPLEX algorithm. DUPLEX selection
ensures that the two sets have the same diversity

of samples [24]. Raw spectra from all three sensor
types are concatenated and fed to the DUPLEX
algorithm. By using the sensor data, the two sets
will cover approximately the same region of sensor-
data-space. Figure 3 shows the samples selected for
the test set in red; for the purpose of visualization,
Li% and Zr% concentrations are plotted.

We use 10-fold cross-validation (CV) with the
remaining 142 samples to partition the data into
a training set, Tk, and a validation set, Vk, for
k ∈ [1..10]. The partitions are illustrated in Fig-
ure B.9.

An overview of model training, hyperparameter
optimization (HPO), and evaluation is given in the
pseudo-code in Figure 2. Root-mean-square error
(RMSE) is used to score the models. Model hyper-
parameters are optimized to minimize the RMSE
of cross-validation (RMSECV), which is the RMSE
of the union of all validation sets (and is equivalent
to minimizing the sum of squared errors summed
over all folds, see Figure 2, line 6). The best model
configuration from HPO (see line 7) is evaluated on
the test set, and we report its error distribution as
the RMSE of prediction (RMSEP) for each fold of
cross-validation (calculated in line 11).

2.1.6. Spectral Pre-processing

Spectral data is often pre-processed prior to mod-
eling. One of the most common methods is stan-
dardization using standard normal variate (SNV)
[25]. SNV is applied to each spectrum by subtract-
ing the mean of the spectrum and dividing by the
standard deviation of the spectrum [26]. Although
originally developed for near-infrared (NIR), it is a
general technique that can also be applied to other
types of spectra, such as LIBS [21, 27]. We test
models with and without SNV applied to all three
types of spectra.

A comparison of other pre-processing methods
[28] is outside the scope of the present study. Pre-
processing has been found [29] to reduce perfor-
mance in at least one case. In preliminary testing,
we found negligible difference in PLS model per-
formance using the following pre-processing meth-
ods: the first and second derivative of the smoothed
spectrum (smoothing via a Savitzky–Golay filter
with window size of 13), and the first and second
derivative of the smoothed SNV spectrum. The
amount of smoothing (i.e. the window size) is a
hyperparameter that ought to be tuned per sen-
sor. To keep the hyperparameter search space small
and to keep the number of experiments manageable,
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these methods were excluded from the study. Fu-
ture work is to consider the effect of pre-processing
methods, and their combinations, on sensor fusion
performance.

2.2. PLS-based Models

Three PLS-based sensor fusion models are tested
based on partial least squares (PLS) [30] regres-
sion, which models the relationship between spec-
tral data and the concentrations of Li and Zr in rock
samples. Two hyperparameters are considered: the
number of components (from 1 to 40) and whether
to standardize the spectra with SNV. The hyperpa-
rameters are optimized through grid search to min-
imize the root mean square error of cross-validation
(RMSECV). The decision of whether to use SNV in
the sensor fusion models is decided by the valida-
tion results of the single-sensor PLS models.

2.2.1. Single-Sensor Models: with PLS

Individual PLS models are trained for each sensor
type and each target. A grid search is performed
to optimize the number of components from 1 to 40
and whether to use SNV. The best hyperparameter
configuration is evaluated on the test set.
For Li, applying SNV to spectra in all sensor

types produced a better RMSECV than using raw
spectra. For Zr, the best approach was to use raw
spectra from XRF and Vis-NIR-SWIR and to use
SNV on LIBS. The PLS models that follow employ
SNV based on these single-sensor results.

2.2.2. Low-level Sensor Fusion: with PLS

In low-level sensor fusion, the fusion is carried
out at the data level (see fusion levels in Figure 1).
This is achieved by concatenating spectra together
then training a PLS model as usual (e.g., [1]). The
predictions obtained in this way are equivalent to
multiblock PLS (MB-PLS) algorithms [31]. We re-
fer to this sensor fusion model as PLS-LL for “Par-
tial Least Squares - Low Level.” Whether to use
raw or SNV spectra is pre-determined by the vali-
dation results of the single-sensor PLS models (from
Section 2.2.1); SNV is applied prior to concatena-
tion. However, the number of components (from 1
to 40) is again optimized through grid search.

2.2.3. High-level Sensor Fusion: with NNLS

In high-level, or decision-level, sensor fusion, fu-
sion is achieved by combining “decisions,” which are
the predictions made by multiple trained models,
in this case, the predicted Li or Zr concentrations
from single-sensor PLS models. We call this sensor
fusion model PLS-HL for “Partial Least Squares -
High Level.”

We use a non-negative least squares (NNLS)
model to combine the prediction values. Lee et
al. [4] found that this type of sensor fusion model
outperformed MB-PLS. NNLS is a method used to
solve linear least squares problems where the model
coefficients are constrained to be positive [32]. The
non-negative constraint aligns with our intuitions
that the final prediction is essentially a weighted av-

1 function HPO(model)

2 for config in configurations do

3 SSE = 0 // Sum of squared errors

4 for k in [1..10] do

5 fk = train(config, Ck) // Train model on training set Ck; see Figure B.9

6 SSE +=
∑

<x,y>∈Vk
(fk(x)− y)2 // Score predictions of validation set Vk

7 return f1..10 of config with lowest SSE // Note: RMSECV =
√

SSE
142

8 function final evaluation(model)

9 f1..10 = HPO(model)

10 for k in [1..10] do

11 RMSEPk =
∑

<x,y>∈T

√
(y−fk(x))2

|T | // Score predictions of test set T

12 boxplot(model, RMSEP1..10) // Shown in Figure 7

Figure 2: Pseudo-code overview of model training, hyperparameter optimization (HPO function), and final evaluation. Ck,
Vk, and T are sets of (x, y) pairs in training, validation, and test sets respectively (where k denotes kth fold); these dataset
partitions are shown in Figure B.9.
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Figure 3: The DUPLEX algorithm selects a test set (red ×)
that captures the same diversity of samples as the remaining
samples.

erage of the predictions made by each single-sensor
model. A negative weight, however, would indicate
that an increase in the corresponding single-sensor
model’s predicted concentration is associated with a
decrease in the final predicted concentration, which,
intuitively, is not what we expect.

The NNLS model predictions are weighted
sums of three predictions from the three best
hyperparameter-tuned single-sensor PLS models.
For each fold of cross-validation, the three single-
sensor models make predictions on the training set
(as per the data partitioning shown in Figure B.9),
and then the NNLS model uses these predictions to
calibrate its weights.

2.2.4. High-level Sensor Fusion: with ROSA

Response-Oriented Sequential Alternation
(ROSA) [33, 34] is a state-of-the-art multiblock
extension to PLS. In ROSA, components are
constructed sequentially, using only one block per
component. For each component, whichever block
reduces the variance the most is selected. A benefit
of this approach is that it is invariant to block
scaling.

ROSA can be used for sensor fusion. When the
input blocks to ROSA are spectra pre-processed
in different ways, the result is a model that auto-

matically chooses from the available pre-processing
methods [35]; when the input blocks are spectra
from different sensors, ROSA effectively performs
sensor fusion. We use spectra from each of the three
sensor types. Whether to use raw or SNV spectra
is pre-determined by the validation results of the
single-sensor PLS models (from Section 2.2.1). As
in the other PLS models, the number of components
(from 1 to 40) is optimized through grid search.

2.3. Neural Network Models

Two single-sensor neural networks (NN) and two
sensor fusion models are developed. Each is devel-
oped in turn, as we freeze some hyperparameters
after each one to reduce the size of the hyperpa-
rameter search space in subsequent models. The
models are trained separately for each prediction
target.

The training procedure for all the neural net-
works is based on standard practice [36, 37, 23].
Each input variable is standardized independently
by subtracting the mean and dividing by the stan-
dard deviation [38]. The weights of the neural net-
work are optimized by stochastic gradient descent
using the ADAM [39] algorithm. All the layers
(except the last) use exponential linear unit (ELU
[40]) activations. Convolutional kernels and fully-
connected weights are initialized by the He normal
[41] initialization method. The batch size is set to
the full size of the training data. The learning rate
halves each time validation loss stops improving for
25 epochs, and early stopping is employed with a
patience of 200 epochs; validation loss is calculated
on 10% of training samples, selected randomly at
the start of a new training run. Training runs for
a maximum of 10000 epochs (but mean number of
epochs was around 1300 epochs, due to early stop-
ping).

2.3.1. Neural Network Hyperparameter Optimiza-
tion

Automatic hyperparameter optimization is per-
formed for all the neural network models following
established protocols [42, 43]. There are many hy-
perparameters available to tune and testing all hy-
perparameter combinations is computationally pro-
hibitive, even when only a subset is considered. To
address this, an implementation of Bayesian op-
timization (BO), called hyperopt [44], is used to
search through the space of hyperparameters to
minimize root mean square error of cross-validation
(RMSECV).
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The BO algorithm chooses the configurations to
test in line 2 of Figure 2. In the field of automated
machine learning (Auto-ML), Bayesian optimiza-
tion represents the current state-of-the-art for con-
ducting a search through a hyperparameter search
space. Bayesian optimization for HPO [45, 46, 47]
employs a sequential approach to select hyperpa-
rameter configurations based on a combination of
their estimated performance and the level of uncer-
tainty associated with the estimate.

Our study focuses on a select number of hyper-
parameters, similar to previous studies [48, 23, 43],
which are listed for each neural network model in
the following sections. Each run of HPO was ran
for about 700 trials. We ran this many because the
best hyperparameter configuration stopped chang-
ing between 50 and 600 trials (but typically around
300), and then we ran each one longer until they all
had at least 700 trials.

One challenge in HPO is that neural networks
are known to produce different results each time
they are trained [36], which adds noise to the objec-
tive. However, it has been demonstrated [43] that
ensembling randomly-initialized neural networks is
effective in reducing variance during hyperparam-
eter optimization. The number of members in the
ensemble can be selected to trade-off between vari-
ance and compute time. To determine the num-
ber of members, an analysis of the effect of en-
semble size on variance was carried out (see Ap-
pendix A). This analysis was conducted using the
initial configuration of the NN1 model, prior to hy-
perparameter optimization. Based on this analysis,
variance is significantly reduced when the ensemble
size reaches approximately 30 members. Beyond
30, both variance and mean RMSE show little sen-
sitivity to the specific number chosen. We opted for
a ensemble size of 40 members given the computa-
tional resources at our disposal.

2.3.2. NN1: Single-Sensor Neural Network

One-dimensional (1D) convolutional neural net-
works (CNNs) are a type of neural network com-
monly used for analyzing sequential data, such as
spectra [49, 50, 51, 37, 52, 53, 54, 55, 56, 57, 58].
CNNs for spectral analysis all follow a similar pat-
tern: one or more convolutional layers followed by
one or more fully-connected layers, with an activa-
tion function after each layer. The convolution op-
eration is useful for spectra because it automatically
learns how to transform the spectra in the same way

Figure 4: NN1 is a single-sensor model with one convolu-
tional layer and one fully-connected layer which outputs a
predicted concentration per input spectrum.

that pre-processing techniques do (such as smooth-
ing and taking derivatives) [48, 37, 38, 59].

CNNs can take on many possible architectures;
it is recommended [23] in chemometrics to start
with simple networks and gradually increase com-
plexity. Furthermore, it has been suggested [42]
that, in chemometrics, a single convolutional layer
may be sufficient, which is consistent with our own
experience too. The first neural network (NN1)
we test uses one convolutional layer and one fully-
connected layer (also known as a dense layer),
shown in Figure 4. The search space selected for
NN1 is:

� Whether to standardize spectra using SNV

� L2 regularization factor, which is a real num-
ber sampled uniformly from 10−4 to 100 in log
space. The log space is useful because a simi-
lar impact is expected when changing the value
from 0.001 to 0.002 as from 10 to 20, for ex-
ample, whereas 10.001 to 10.002 is likely neg-
ligible.

� Learning rate (LR) (one of 1, 10−1, or 10−2)

� Convolutional layer’s filter size (one of 3, 5, 7,
11, 15, 21, 29, 41, 57, 79, 111, 155, or 217;
search space is approximately logarithmic and
rounded to the nearest odd number, ranging
from 3 to 217)

� Convolutional layer’s number of filters (an in-
teger from 1 to 5)

HPO is carried out for all three sensor types and
for both targets (Li and Zr). Additionally, whether
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Figure 5: NN2 is similar to NN1 except an additional fully-
connected layer is added.

to use SNV is optimized in a separate HPO run
to allow analysis of the effect of standardization.
Thus, 12 HPO runs are carried out for NN1.

2.3.3. High-level Sensor Fusion: with NNLS

Just like the PLS-HL model described in Sec-
tion 2.2.3, the predictions from trained single-sensor
neural networks may also be fused together to form
a high-level sensor fusion model. We call this model
NN1-HL.

2.3.4. NN2: Adding a hidden layer

The second neural network (NN2) we developed,
shown in Figure 5, is similar to NN1 except an ad-
ditional fully-connected layer is added (known as a
hidden layer). This fully-connected layer is added
because it will allow the sensor fusion neural net-
work (described in the next section) to balance sen-
sors via L2 regularization. The additional layer also
allows the model to learn more complex interactions
and non-linearities, but at the risk of overfitting.
While this could have been included as a hyperpa-
rameter in NN1, doing it separately allows us to
evaluate the effect of adding this layer.
To reduce the search space, some hyperparame-

ters are frozen based on the results of NN1’s HPO
(discussed in the results, Section 3.1, and Table 1).
Since a fully-connected layer is added, the L2 reg-
ularization factor should be re-optimized for NN2.
Typically, the L2 factor is the same among all fully-
connected layers, but here they are separate be-
cause they will be optimized individually in the sen-
sor fusion model. The HPO search space for NN2
is:

� L2 regularization factor for the intermediate
layer (a real number sampled uniformly from
10−4 to 100 in log space)

� L2 regularization factor for the final layer (a
real number sampled uniformly from 10−4 to
100 in log space)

� Number of units in the intermediate layer (an
integer from 1 to 20)

2.3.5. NN3: Feature-level Sensor Fusion

The third neural network is a parallel-input con-
volutional neural network [15, 16] that we use to
perform mid-level sensor fusion, which we call NN3-
ML for “Neural Network 3 - Mid-Level.” The model
consists of layers arranged in parallel, each with its
own input. Each input, known as a “block,” is a
set of spectra1.
The neural network architecture is shown in Fig-

ure 6 and is composed of three convolutional layers,
one per block, each with its own set of learned fil-
ter(s). Like NN2, a fully-connected layer follows
each convolution layer; these fully-connected lay-
ers output intermediate features specific to each
sensor. Finally, a fully-connected layer connects
these intermediate features together—“fusing” the
features from each sensor type—and outputs the
predicted Li or Zr concentration. Instead of one
shared regularization hyperparameter, each fully-
connected layer has its own L2 regularization factor
hyperparameter:

� L2 on intermediate fully-connected lay-
ers: The sensor-specific branches of the model
are individually regularized to enable the sen-
sor fusion neural network to balance the sensor
types appropriately. The initial sampling dis-
tribution for each of these hyperparameters is
based on the results of HPO from NN2. Specif-
ically, a lognormal distribution centered at the
optimal value from NN2 for each sensor and
target, with a standard deviation such that
95% of samples fall within one order of magni-
tude.

� L2 on final fully-connected layer: Due to
an increase in the number of connections to the

1A “block” is multivariate data consisting of a set of re-
lated input variables. In this study, there are three blocks of
spectra, one block per spectrometer.
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Figure 6: NN3 is essentially three of NN2 stacked in parallel, one per sensor (or “block”). The final fully-connected layer
“fuses” the features from the intermediate layer together to make a prediction.
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final output as compared to NN2, it is neces-
sary to re-optimize the L2 regularization fac-
tor. The initial sampling distribution in the
search space is a lognormal distribution cen-
tered at the average value from NN2’s HPO
runs, with a standard deviation equal to that
of the values from NN2’s HPO runs.

2.4. Compute Hardware and Software

Source code used to train the models is avail-
able on GitHub2. Python 3.9, Octave 7.3, and R
4.2.2 were used in this study. We used the DUPLEX

algorithm, which is available in the prospectr R
package3. Neural network models were trained us-
ing TensorFlow 2.64 in Python. PLS models were
trained using the scikit-learn Python package5.
ROSA models were trained using the multiblock

R package6, which we ran via rpy27. Experiments
were run on a high-performance compute cluster
called Cedar8, which is hosted by Simon Fraser Uni-
versity for the Digital Research Alliance of Canada,
with NVIDIA V100 and P100 GPUs and Intel Xeon
CPUs (1352 GPU devices and 94528 CPU cores).
A total of 374 GPU-days were utilized in training
neural networks in the HPO experiments.

3. Results and Discussion

With numerous methods available in the liter-
ature for fusing data from multiple sensors, we
trained models from each level and compared
against single-sensor models for each sensor. The
results of neural network hyperparameter optimiza-
tion are reported first as these are utilized in con-
structing NN2 and NN3-ML. Then the results of
single-sensor and sensor fusion models are pre-
sented.

2https://github.com/skylogic004/

spectroscopy-neural-network-2
3https://rdrr.io/cran/prospectr/man/duplex.html

and https://github.com/l-ramirez-lopez/prospectr
4https://www.tensorflow.org/versions/r2.6/api_

docs/python/tf
5https://scikit-learn.org/stable/modules/

generated/sklearn.cross_decomposition.PLSRegression.

html
6https://github.com/khliland/multiblock
7https://rpy2.github.io/
8https://docs.alliancecan.ca/wiki/Cedar

3.1. Neural Network HPO

Some hyperparameters in NN2 are frozen based
on the HPO results on NN1, listed in Table 1.
Where possible, the same value is used across both
targets for a given sensor (when the difference in
prediction error is negligible); for instance, the best
number of filters for the Vis-NIR-SWIR model tar-
geting Zr was found to be 4, whereas targeting Li
it was found to be 5 but 4 was almost as good, so
4 is used for both models in NN2.

The best hyperparameter values found from NN2
HPO are listed in Table 2. For NN3-ML, frozen
hyperparameters include the ones previously frozen
and also the best-found value for the number of
hidden units (per sensor and per target) from NN2
HPO. The search space, described in Section 2.3.5,
for L2 regularization factors is based on the best L2

values from NN2. The optimized hyperparameter
values for NN3-ML are listed in Table 2.

More hyperparameter and architecture variations
are possible, but are not necessary for testing sensor
fusion and would greatly expand the hyperparame-
ter search space if included. However, we conducted
some preliminary testing (not shown) of some but
found negligible differences in prediction accuracy
on the validation set; the methods we tried were
(1) batch normalization [60] after the convolutional
layer or after the fully connected layers, (2) a prox-
imity L2 norm9 [49], (3) smaller batch sizes [61], (4)
learning rate scheduler hyperparameters (patience,
reduction factor, and minimum learning rate), and
(5) pre-processed spectra in various combinations
(including first and second derivatives of smoothed
spectra, for both PLS and neural networks). An
open avenue of research is to establish which archi-
tecture(s) and hyperparameter configurations are
best in chemometrics; narrowing down these op-
tions would greatly reduce the effort and compute
time needed to develop neural network models.

3.1.1. Results of Single-Sensor Models

Results of the single-sensor models on two predic-
tion tasks are presented in Figure 7. Each model’s
results is shown by a box representing the distribu-
tion of RMSEP scores from 10 trained instances of

9The proximity L2 norm introduces a regularizer on the
convolution filters that encourages them to be smooth; in
preliminary testing, we found that this produces nice smooth
filters resembling Gaussian smoothing and first derivatives,
which has the potential to be advantageous in some applica-
tions and may merit further investigation.
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Target Sensor Standardization LR Conv. width Num filters

Li
XRF SNV 0.01

111
1

Zr 41

Li
Vis-NIR-SWIR SNV 0.01 57 4

Zr

Li
LIBS SNV 0.01 57 3

Zr

Table 1: Frozen hyperparameters for NN2 as a result of NN1 HPO.

Results of NN2 HPO Results of NN3-ML HPO

Intermediate FC layer Final FC Sensor-specific FC Final FC

Target Sensor # units L2 L2 L2 L2

Li
XRF 6 2.26E-02 11.532 6.65E-03

10.608Vis-NIR-SWIR 19 9.18E-04 8.804 2.38E-04
LIBS 17 1.61E-03 3.420 4.36E-03

Zr
XRF 9 2.48E-03 1.187 1.31E-03

30.250Vis-NIR-SWIR 8 5.02E-04 12.233 1.58E-04
LIBS 17 6.12E-03 9.936 6.11E-03

Table 2: Hyperparameter optimization (HPO) results for all fully-connected (FC) layers in NN1 and NN2

this model, where each instance was trained on a
different fold of cross-validation. In order to facili-
tate interpretation, a naive baseline is included that
outputs the average training set Li or Zr concentra-
tion (labeled “PtA” for “predict the average” and
drawn as a black box in the figures). Single-sensor
models are labeled with their sensor type appended
to the name (e.g., NN1-XRF) and color-coded with
XRF in orange, Vis-NIR-SWIR (labeled HS, for hy-
perspectral, for brevity) in blue, and LIBS in red.
Each sensor has different strengths and weaknesses.
Sensor-specific results are discussed next.

XRF: Li is not directly detectable by XRF, but
a geochemical relationship was observed between
Li and Rb which XRF is well-suited to detect. A
strong Zr peak is expected in XRF. Models using
the XRF sensor perform the best on average for
both the Li and Zr target variables. While it was
expected that Zr models using XRF would do well,
Li performed better than expected despite relying
on indirect signals.

Vis-NIR-SWIR: The Vis-NIR-SWIR models
perform the poorest of the three sensors. Minerals
that host Li are known to show spectral responses
in the SWIR region, so it was expected that these
models would exploit this. The host mineral for Zr

(which is zircon) generally does not show spectral
features. For Li, Vis-NIR-SWIR models were able
to extract a signal, as expected, achieving much
better performance than PtA. Zr models performed
poorly, which is also as expected. Overall, Vis-NIR-
SWIR models did worse than both the other sensor
types.

LIBS: LIBS is expected to have difficulty with
Li because the spectral range does not cover the key
lines related to Li. The primary Li peak in LIBS
is near 671 nm, which is outside of range, and the
other Li peaks are small and only present in a few
of the samples. Rb, which is correlated to Li, is also
out of range. The Li models did very well consider-
ing that Li is out of range, especially with the neural
network models (NN1 and NN2). Zr is within range
in LIBS and the Zr models did reasonably well, al-
beit not as well as XRF. LIBS may not have done
as well as XRF because of the difference in spot size
for the LIBS system compared to the XRF and Vis-
NIR-SWIR systems, which are considerably larger.
Although the rocks analyzed are fine-grained and
particles were not very heterogeneous, the scale of
observation relative to the volume that was geo-
chemically analyzed would have an impact on the
representativity of the spectrometer response.

10
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(a) Results of the lithium (Li) prediction task.
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(b) Results of the zirconium (Zr) prediction task.

Figure 7: Test-set results of (a) Li and (b) Zr prediction tasks. Each box gives the distribution of test-set scores (measured
in RMSE, which is in the same units as the target variable) obtained by training each model 10 times (on different folds of
cross-validation). Lower is better. The edges of the boxes are the upper and lower quartiles of the distribution with a line at
the median. The whiskers extend from the box to show the range of the data. Vis-NIR-SWIR hyperspectral is labeled HS
for brevity. Model names are suffixed with the name of the sensor (XRF, HS, or LIBS) for single-sensor models or the sensor
fusion level (LL: low level, ML: mid level, HL: high level) for models that use all three sensors. PtA means predict the average
(which is a naive baseline).
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3.1.2. Results of Sensor Fusion Models

Sensor fusion results are shown in Figure 7,
drawn in green and labeled with the sensor fusion
level (LL, ML, or HL) appended to the name (e.g.,
PLS-LL for PLS utilizing low-level fusion). The
results indicate that the best sensor fusion model
depends on the prediction target.

Li target: Of the sensor fusion models and with
Li as the target, ROSA-HL obtains the best RMSE
on average. The next best is the high-level fusion
of neural network models (NN1-HL). Considering
all the models for the Li prediction task (including
single-sensor models and sensor fusion models), the
results indicate that the single-sensor PLS model
using XRF spectra achieves the lowest RMSE.

That the XRF-only approach performed best for
Li was unexpected. While the XRF response was
expected to exploit the relationship between Li and
Rb, the Vis-NIR-SWIR data was expected to com-
plement XRF in sensor fusion models because of
the Li host minerals that display spectral responses
in the SWIR region. Li predictions with Vis-NIR-
SWIR and LIBS were also substantially better than
PtA, which indicates that there are features in the
reflectance (Vis-NIR-SWIR) and LIBS spectra re-
lated to the Li-mineralized rock type. Thus, it is
surprising that the sensor fusion models were un-
able to leverage the different types of sensors to
achieve better results than PLS with XRF alone.

Zr target: Of the sensor fusion models with Zr
as the target, the best is PLS-HL, followed by NN1-
HL, then NN3-ML. PLS-HL also outperforms all
the single-sensor models, with a lower RMSE than
any of the single-sensor PLS models, on which it is
based. The improved performance may be because
of the complementary information provided by the
different sensor types.

The performance patterns for Zr are more in line
with expected results. The XRF-only approaches
were the best for the single sensors, which is logical
since there is a strong XRF peak expected. The
Vis-NIR-SWIR-only approach was marginally bet-
ter than PtA, which is not surprising since it is
difficult to discern Zr-enriched rocks visually, and
the host mineral (zircon) generally does not show
spectral features unless the field of view is dom-
inated only by this mineral. Prediction error for
LIBS fell between Vis-NIR-SWIR and XRF, which
is expected since this sensor’s response is compo-
sitionally controlled (which is good for predicting
element concentrations) but the spot size is small

(which reduces representativity). Sensor fusion ap-
proaches achieved as good and better results than
any single sensor, thus demonstrating that integrat-
ing different types of sensor data can improve over-
all performances.

3.2. Interpreting Behavior of High-level Sensor Fu-
sion

A benefit of high-level sensor fusion models is the
ease of interpretability; NNLS weights are easily
examined and ROSA reports the block order of the
“winning” blocks.

NNLS weights for PLS-HL and NN1-HL are ap-
proximately equal across the 10 folds, so average
values (rounded to 2 decimal places) are reported
in Table 3. The PLS-HL model for Li performed
poorly. From the weights, we observe that this
model favors the PLS-LIBS model predictions the
most. We investigated further and found that PLS-
LIBS’s training RMSE is much lower than its val-
idation and test-set RMSE which indicates over-
fitting, and it fits the training data better than
the other two sensors. As a result, PLS-HL for Li
is weighing LIBS higher than XRF and Vis-NIR-
SWIR, and is adopting a similar RMSE as the LIBS
model on its own.

The remaining three NNLS models (PLS-HL for
Zr and NN1-HL for Li and Zr) exhibit similar be-
haviors: XRF has the highest weight followed by
LIBS, and the weight for Vis-NIR-SWIR is zero or
almost zero. Low Vis-NIR-SWIR weight is consis-
tent with the training and test-set predictions for
Vis-NIR-SWIR which were worse than both XRF
and LIBS. By not utilizing Vis-NIR-SWIR, these
models are potentially missing out on complemen-
tary sensor information.

XRF Vis-NIR-SWIR LIBS

PLS-HL
Li 0.05 0.07 0.91
Zr 0.68 0.01 0.36

NN1-HL
Li 0.60 0.02 0.50
Zr 0.84 0.00 0.30

Table 3: Model weights for PLS-HL and NN1-HL in the non-
negative least squares (NNLS) sensor fusion model.

As for ROSA, in the Li prediction task it selects
LIBS in the first component and XRF for the re-
maining 17 components; Vis-NIR-SWIR never won
in any of the iterations. For the Zr prediction task,
the ROSA model has 12 components. Results vary
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among the 10 models from cross-validation, but to
summarize, the components are mostly XRF ex-
cept: in 4 models Vis-NIR-SWIR is used once (i.e.,
Vis-NIR-SWIR is used in 1 of 12 components), in 3
models LIBS is used once, and in 3 models neither
Vis-NIR-SWIR nor LIBS is used (only XRF). Since
the ROSA models are primarily picking XRF spec-
tra in their components, it is not surprising that
their RMSEP distribution closely matches the XRF
models.
In summary, results indicate that XRF data is

the most influential in the sensor fusion models, and
that future work is needed to inject domain knowl-
edge into these models in order to better exploit the
other sensor types.

3.3. Modeling Considerations and Limitations

Aside from prediction error, other factors should
be considered when choosing a sensor fusion
method. The neural network models were the most
time-consuming to develop. High-level fusion us-
ing NNLS is computationally fast but requires two
steps: training individual models per sensor, then
training the NNLS model using their outputs. In
practice, individual models are often built anyway,
so adding a high-level fusion model on top (such as
PLS-HL or NN1-HL) is easy and practical, so long
as all individual models perform well on their own;
as we observed, when one model overfits then high-
level fusion overfits as well. ROSA models are also
quick to train, have only one hyperparameter (the
number of components), and perform well. The
main downside of PLS-based models is that fur-
ther testing of pre-processing is typically required,
whereas the neural network models likely do not
benefit from it. NN1-HL may strike a good balance
between the flexibility of neural networks and the
simplicity of high-level sensor fusion.
Opportunity exists for a meta-analysis of the re-

sults. For example, it may be that certain clusters
of samples have poor predictions, possibly related
to other less quantitative variables such as rock
type. Finding out why “difficult samples” perform
poorly may lead to a better understanding of each
sensor’s and model’s capabilities and limitations,
such as when one sensor or model is applicable ver-
sus another. A meta-analysis may reveal patterns
about where sensor fusion can have the greatest im-
pact in the mineral exploration and mining indus-
tries, which are currently undergoing rapid digital-
ization. Additionally, there may be grade ranges
that are more important than others. If the cut-off

grade for a mine is 0.2% Li, then a sample with
0.6% Li predicted to have 0.7% Li is less relevant
than a 0.1% Li sample predicted at 0.2% Li. In
the first case, the rock is clearly of ore grade re-
gardless of the prediction error. In the second case,
the prediction error would result in the material
being classified as ore when instead it should be
treated as waste. While there was not one sensor fu-
sion model that dominated the rest, having multiple
models to choose from is useful when additional cri-
teria arise in real-time sensing environments (e.g.,
sensor-based core logging and rock sorting).

Small datasets are an unfortunate reality because
of the cost associated with sample collection and
analysis. Training neural networks with limited
data poses challenges compared to large datasets,
due to the risk of overfitting given the number of
parameters in a neural networks. In the litera-
ture, CNNs have been successful on various small
datasets, including 80 NIR samples [62, 54], 192
Vis-NIR samples [63] 124 MIR samples [51], 219
NIR samples [64], and 60 NIR samples [65], among
others [55]. An increase in data is expected to sig-
nificantly enhance the performance of neural net-
work sensor fusion models as compared to PLS
models.

This paper serves as a preliminary investigation
due to the reliance on a single dataset. More studies
that test diverse domains are required before defini-
tive recommendations can be made. Datasets with
the ground truth and multiple sensors are typically
expensive to create, so it is even more important to
have multiple studies, so expensive decisions can be
made with the best evidence.

4. Conclusion

While the neural network models were competi-
tive, the most effective approach for sensor fusion
was achieved through high-level PLS-based meth-
ods. The ROSA model for Li prediction and the
PLS-HL model for Zr prediction yielded the best
results among the sensor fusion models. We com-
pared sensor fusion models—spanning low-level,
mid-level, and high-level sensor fusion—to single-
sensor models and found that sensor fusion im-
proved predictions for one out of the two predic-
tion tasks. For the Zr prediction task, combin-
ing information from three sensors resulted in the
lowest RMSE on average, effectively leveraging the
data from multiple sensors. For the Li prediction
task, the PLS single-sensor model utilizing XRF
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outperformed all the sensor fusion models. Among
the single-sensor models, neural networks demon-
strated better performance than PLS in two out of
the six tasks. A parallel-input convolutional neu-
ral network was developed for sensor fusion. This
model (NN3-ML) consistently achieved compara-
ble RMSE to the models utilizing a single sensor
(XRF), for both prediction tasks. It is important
to recognize that improved performance cannot be
guaranteed solely by increasing the number of sen-
sor types or employing a more sophisticated predic-
tion model. And, given the small size of the dataset
in the experiments, larger datasets are likely to ex-
hibit different behavior. Conducting multiple stud-
ies using diverse datasets is essential to gain deeper
insights. This study should be seen as one of many
contributing to a more comprehensive understand-
ing of sensor fusion in spectroscopy.
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Appendix A. Ensemble Size

To choose the number of members in the ensem-
ble, an analysis was conducted to examine the re-
lationship between RMSE and ensemble size prior
to the experiments described in this paper. A CNN
like NN1 was used for this analysis, before hyper-
parameter optimization was conducted.

Following the approach used previously [43], the
RMSE distributions in Figure A.8 are computed by
training the neural network 5000 times and simu-
lating ensembles of different sizes. Each ensemble
is a random, but unique, combination of N models.
We generate 200 ensembles of each size, N , and plot
the distribution of RMSE scores. From these re-
sults, it’s apparent that the variance is significantly
reduced after around N = 30, with diminishing re-
turns as N increases further. It is important to
point out that the number of members should be
adjusted according to the requirements of the pre-
diction task and the computational resources avail-
able to the practitioner.

Appendix B. Data Partitioning

Visualization of the data splitting procedure is
shown in Figure B.9, with details provided in Sec-
tion 2.1.5.
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Figure A.8: Boxplot showing how much RMSE decreases as the size of the ensemble increases. Size N = 1 (purple) indicates
the distribution of RMSE scores over 5000 single re-trainings (with random initialization) of the neural network model. Each
box (where N > 1) is a distribution over 200 simulated ensembles, where each ensemble is formed from a unique combination
of N trained models from the pre-computed set of 5000. We use ensembles with 40 member models in our experiments (green).
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Figure B.9: The dataset contains 177 rock samples split into
one test set, 10 training sets, and 10 validation sets for cross-
validation.
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